Advanced Search

Show simple item record

dc.contributor.authorPolat, Hüseyin
dc.contributor.authorDu, Wenliang
dc.date.accessioned2019-10-21T19:44:31Z
dc.date.available2019-10-21T19:44:31Z
dc.date.issued2007
dc.identifier.isbn978-1-59593-480-2
dc.identifier.urihttps://hdl.handle.net/11421/19896
dc.description22nd ACM Symposium on Applied Computing -- MAR 11-15, 2007 -- Seoul, SOUTH KOREAen_US
dc.descriptionWOS: 000268215700130en_US
dc.description.abstractRandomized perturbation techniques (RPT) are applied to perturb the customers' private data to protect privacy while providing accurate referrals. In the RPT-based collaborative filtering (CF) with privacy schemes, proposed so far, users disguise their ratings in the same way to achieve consistently perturbed data. However, since users might have different levels of concerns about their privacy, the customers might decide to perturb their private data differently, which causes inconsistently masked data. How, then, can e-companies present referrals using such data and how can inconsistent data disguising affect accuracy and privacy?en_US
dc.description.sponsorshipACMen_US
dc.language.isoengen_US
dc.publisherAssoc Computing Machineryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInconsistently Perturbed Dataen_US
dc.subjectPrivacyen_US
dc.subjectAccuracyen_US
dc.subjectCfen_US
dc.subjectRpten_US
dc.titleEffects of Inconsistently Masked Data Using RPT on CF with Privacyen_US
dc.typeconferenceObjecten_US
dc.relation.journalApplied Computing 2007, Vol 1 and 2en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage649en_US
dc.identifier.endpage+en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record