Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOkkalıoğlu, Burcu Demirelli
dc.contributor.authorKoç, Mehmet
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T19:44:32Z
dc.date.available2019-10-21T19:44:32Z
dc.date.issued2016
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttps://dx.doi.org/10.1016/j.neucom.2016.05.014
dc.identifier.urihttps://hdl.handle.net/11421/19899
dc.descriptionWOS: 000382794500034en_US
dc.description.abstractThe basic idea behind privacy-preserving collaborative filtering schemes is to prevent data collectors from deriving the actual rating values and the rated items. Different data perturbation methods have been proposed to protect individual privacy. Due to different privacy concerns, users might disguise their data variably to meet their own privacy concerns. In addition to reconstructing the true rating values, data collectors might try to reconstruct the rated items. In this paper, our goal is to reconstruct the rated items with the help of auxiliary information when users mask their confidential data inconsistently in privacy-preserving prediction systems. We first need to estimate the number of the rated items. Then we have to predict the rated items. To do so, we first use existing methods to eliminate noise from the disguised data. We improve our predictions by utilizing the auxiliary information. Our real data-based empirical outcomes show that our proposed approaches are able to reconstruct the rated items with decent accuracy in spite of variable data maskingen_US
dc.description.sponsorshipTUBITAK [113E262]en_US
dc.description.sponsorshipThis work is supported by the Grant 113E262 from TUBITAK.en_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.isversionof10.1016/j.neucom.2016.05.014en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Reconstructionen_US
dc.subjectNoise Reductionen_US
dc.subjectAuxiliary Informationen_US
dc.subjectPrivacyen_US
dc.subjectRandomized Perturbationen_US
dc.subjectCollaborative Filteringen_US
dc.titleReconstructing rated items from perturbed dataen_US
dc.typearticleen_US
dc.relation.journalNeurocomputingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume207en_US
dc.identifier.startpage374en_US
dc.identifier.endpage386en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster