dc.contributor.author | Okkalıoğlu, Murat | |
dc.contributor.author | Koç, Mehmet | |
dc.contributor.author | Polat, Hüseyin | |
dc.contributor.editor | GarciaAlfaro, J | |
dc.contributor.editor | NavarroArribas, G | |
dc.contributor.editor | Aldini, A | |
dc.date.accessioned | 2019-10-21T19:44:33Z | |
dc.date.available | 2019-10-21T19:44:33Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-3-319-29883-2 -- 978-3-319-29882-5 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | https://dx.doi.org/10.1007/978-3-319-29883-2_13 | |
dc.identifier.uri | https://hdl.handle.net/11421/19902 | |
dc.description | 10th Data Privacy Management International Workshop (DPM) / 4th International Workshop in Quantitative Aspects in Security Assurance (QASA) -- SEP 21-22, 2015 -- Vienna, AUSTRIA | en_US |
dc.description | WOS: 000375376900013 | en_US |
dc.description.abstract | Collaborative filtering systems provide recommendations for their users. Privacy is not a primary concern in these systems; however, it is an important element for the true user participation. Privacy-preserving collaborative filtering techniques aim to offer privacy measures without neglecting the recommendation accuracy. In general, these systems rely on the data residing on a central server. Studies show that privacy is not protected as much as believed. On the other hand, many e-companies emerge with the advent of the Internet, and these companies might collaborate to offer better recommendations by sharing their data. Thus, partitioned data-based privacy-persevering collaborative filtering schemes have been proposed. In this study, we explore possible attacks on two-party binary privacy-preserving collaborative filtering schemes and evaluate them with respect to privacy performance. | en_US |
dc.description.sponsorship | Inst Mines Telecom, CNRS Samovar UMR 5157, UNESCO Chair Data Privacy, Univ Autonoma Barcelona, Internet Interdisciplinary Inst, Open Univ Catalonia | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Int Publishing Ag | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.relation.isversionof | 10.1007/978-3-319-29883-2_13 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Privacy | en_US |
dc.subject | Collaborative Filtering | en_US |
dc.subject | Binary Data | en_US |
dc.subject | Attack Scenarios | en_US |
dc.title | On the Privacy of Horizontally Partitioned Binary Data-Based Privacy-Preserving Collaborative Filtering | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | Data Privacy Management, and Security Assurance | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.volume | 9481 | en_US |
dc.identifier.startpage | 199 | en_US |
dc.identifier.endpage | 214 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US] |