Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTürk, Ahmet Murat
dc.contributor.authorBilge, Alper
dc.contributor.editorYildirim, T
dc.contributor.editorManolopoulos, Y
dc.contributor.editorAngelov, P
dc.date.accessioned2019-10-21T19:44:38Z
dc.date.available2019-10-21T19:44:38Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-5150-6
dc.identifier.urihttps://hdl.handle.net/11421/19919
dc.descriptionIEEE (SMC) International Conference on Innovations in Intelligent Systems and Applications (INISTA) -- JUL 03-05, 2018 -- Thessaloniki, GREECEen_US
dc.descriptionWOS: 000455620700025en_US
dc.description.abstractCollaborative filtering recommender systems assist individuals to discover relevant products or services that they might be interested in a large set of alternatives by analyzing the collected preferences. Recent research presents that the accuracy of recommendations might be improved significantly by collecting multi-criteria user preferences. Such rating scheme allows users to express their preferences better. Multi-criteria collaborative filtering algorithms are suitable for utilizing in many domains such as research paper, movie, or hotel recommendation. However, such systems are vulnerable to shilling attacks. In order to prevent manipulations, robust recommendation algorithms are required. Although multi-criteria collaborative filtering algorithms were evaluated in several dimension, robustness against shilling attacks has not been studied as a feature. In this paper, we propose an attack-resistant multi-criteria collaborative filtering algorithm. Experimental evaluation confirms that the proposed algorithm is not deeply affected against all known attack types.en_US
dc.description.sponsorshipAristotle Univ Thessaloniki, Democritus Univ Thrace, IEEE Systems & Cybernet Soc, IEEE, Yildiz Techn Univen_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [215E335]en_US
dc.description.sponsorshipThis work is supported by Grant No. 215E335 from The Scientific and Technological Research Council of Turkey (TUBITAK).en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRobustnessen_US
dc.subjectMulti-Criteria Collaborative Filteringen_US
dc.subjectShilling Attacksen_US
dc.subjectClusteringen_US
dc.titleA Robust Multi-Criteria Collaborative Filtering Algorithmen_US
dc.typeconferenceObjecten_US
dc.relation.journal2018 Innovations in Intelligent Systems and Applications (Inista)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster