Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUysal, Alper Kurşat
dc.date.accessioned2019-10-21T19:44:41Z
dc.date.available2019-10-21T19:44:41Z
dc.date.issued2016
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://dx.doi.org/10.1016/j.eswa.2015.08.050
dc.identifier.urihttps://hdl.handle.net/11421/19927
dc.descriptionWOS: 000365058700009en_US
dc.description.abstractFeature selection is known as a good solution to the high dimensionality of the feature space and mostly preferred feature selection methods for text classification are filter-based ones. In a common filter-based feature selection scheme, unique scores are assigned to features depending on their discriminative power and these features are sorted in descending order according to the scores. Then, the last step is to add top-N features to the feature set where N is generally an empirically determined number. In this paper, an improved global feature selection scheme (IGFSS) where the last step in a common feature selection scheme is modified in order to obtain a more representative feature set is proposed. Although feature set constructed by a common feature selection scheme successfully represents some of the classes, a number of classes may not be even represented. Consequently, IGFSS aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in IGFSS to label features according to their discriminative power on classes and these labels are used while producing the feature sets. Experimental results on well-known benchmark datasets with various classifiers indicate that IGFSS improves the performance of classification in terms of two widely-known metrics namely Micro-F1 and Macro-F1en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.eswa.2015.08.050en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGlobal Feature Selectionen_US
dc.subjectFilteren_US
dc.subjectText Classificationen_US
dc.subjectPattern Recognitionen_US
dc.titleAn improved global feature selection scheme for text classificationen_US
dc.typearticleen_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume43en_US
dc.identifier.startpage82en_US
dc.identifier.endpage92en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorUysal, Alper Kurşat


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster