Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOysal, Yusuf
dc.contributor.authorBecerikli, Y
dc.contributor.authorKonar, AF
dc.date.accessioned2019-10-21T20:10:55Z
dc.date.available2019-10-21T20:10:55Z
dc.date.issued2005
dc.identifier.issn0956-5515
dc.identifier.urihttps://dx.doi.org/10.1007/s10845-005-4373-z
dc.identifier.urihttps://hdl.handle.net/11421/19964
dc.descriptionWOS: 000233043500013en_US
dc.description.abstractFuzzy logic and neural networks are two important technologies for modeling and control of dynamical systems and have been constrained by the non-dynamical nature of their some popular architectures. There exist problems such as large rule bases (i.e., curse of dimensionality), long training times, the need to determine buffer lengths. This article proposes to overcome these major problems in phase portrait modeling of a nonlinear system with a dynamic fuzzy network (DFN) with unconstrained connectivity and with dynamic fuzzy processing units called "feurons". Nonlinear physical system properties can be encapsulated by DFN. As an example, DFN has been used as the modeler for some nonlinear physical system such as chaotic, limit cycle, oscillator. The minimization of an integral quadratic performance index subject to dynamic equality constraints is considered for a phase portrait modeling application. For gradient computation adjoint sensitivity method has been used. Its computational complexity is significantly less than direct sensitivity method, but it requires a backward integration capability. We used first and approximate second order gradient-based methods including Broyden-Fletcher-Golfarb-Shanno algorithm to update the parameters of the dynamic fuzzy networks yielding faster rate of convergence.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10845-005-4373-zen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic Fuzzy Logicen_US
dc.subjectNeural Networksen_US
dc.subjectChaosen_US
dc.subjectLimit Cycleen_US
dc.subjectPhase Portraiten_US
dc.subjectMathematical Foundationsen_US
dc.titlePhase portrait modeling of a nonlinear system with a dynamic fuzzy networken_US
dc.typearticleen_US
dc.relation.journalJournal of Intelligent Manufacturingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume16en_US
dc.identifier.issue6en_US
dc.identifier.startpage703en_US
dc.identifier.endpage714en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorOysal, Yusuf


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster