Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTuğrul, Bülent
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T20:10:57Z
dc.date.available2019-10-21T20:10:57Z
dc.date.issued2014
dc.identifier.isbn9783319091525
dc.identifier.issn0302-9743
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-319-09153-2_52
dc.identifier.urihttps://hdl.handle.net/11421/19995
dc.descriptionAssociacao Portuguesa de Investigacao Operacional;Kyushu Sangyo University (KSU);Monash University;Universidade do Minho;University of Basilicata;University of Perugiaen_US
dc.description14th International Conference on Computational Science and Its Applications, ICCSA 2014 -- 30 June 2014 through 3 July 2014 -- Guimaraes -- 106576en_US
dc.description.abstractKriging is one of the most preferred geostatistical methods in many engineering fields. Basically, it creates a model using statistical properties of all measured points in the region, where a prediction value is sought. The accuracy of the kriging model depends on the total number of measured points. Acquiring sufficient number of measurement requires so much time and budget. In some scenarios, private or governmental institutions may collect geostatistical data for the same or neighbor region. Collaboration of such organizations may build better models, if they join their data sets. However, due to financial and privacy reasons, they might hesitate to collaborate. In this study, we propose a solution to build kriging model using distributed data while preserving privacy of each data owners and the client that requests prediction. The proposed scheme creates a kriging model on joint data of all parties who wants to collaborate. We analyze our solution with respect to privacy, performance, and accuracy. Our solution has extra costs; however, they are not that critical. We conduct experiments on real data sets to show that our scheme gives better result than the model created on insufficient measured dataen_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.isversionof10.1007/978-3-319-09153-2_52en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed Dataen_US
dc.subjectGeostatisticsen_US
dc.subjectKrigingen_US
dc.subjectPredictionen_US
dc.subjectPrivacyen_US
dc.titlePrivacy-preserving kriging interpolation on distributed dataen_US
dc.typeconferenceObjecten_US
dc.relation.journalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume8584 LNCSen_US
dc.identifier.issuePART 6en_US
dc.identifier.startpage695en_US
dc.identifier.endpage708en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster