Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaleli, Cihan
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T20:10:58Z
dc.date.available2019-10-21T20:10:58Z
dc.date.issued2013
dc.identifier.issn1865-1348
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-642-39878-0_19
dc.identifier.urihttps://hdl.handle.net/11421/20001
dc.description.abstractIn this study, binary forms of previously defined basic shilling attack models are proposed and the robustness of naïve Bayesian classifierbased collaborative filtering algorithm is examined. Real data-based experiments are conducted and each attack type's performance is explicated. Since existing measures, which are used to assess the success of shilling attacks, do not work on binary data, a new evaluation metric is proposed. Empirical outcomes show that it is possible to manipulate binary rating-based recommender systems' predictions by inserting malicious user profiles. Hence, it is shown that naïve Bayesian classifier-based collaborative filtering scheme is not robust against shilling attacksen_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.isversionof10.1007/978-3-642-39878-0_19en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNaidie;Ve Bayesian Classifieren_US
dc.subjectPredictionen_US
dc.subjectRobustnessen_US
dc.subjectShillingen_US
dc.titleRobustness analysis of naïve Bayesian classifier-based collaborative filteringen_US
dc.typearticleen_US
dc.relation.journalLecture Notes in Business Information Processingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume152en_US
dc.identifier.startpage202en_US
dc.identifier.endpage209en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKaleli, Cihan


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster