dc.contributor.author | Kaleli, Cihan | |
dc.contributor.author | Polat, Hüseyin | |
dc.date.accessioned | 2019-10-21T20:10:58Z | |
dc.date.available | 2019-10-21T20:10:58Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1865-1348 | |
dc.identifier.uri | https://dx.doi.org/10.1007/978-3-642-39878-0_19 | |
dc.identifier.uri | https://hdl.handle.net/11421/20001 | |
dc.description.abstract | In this study, binary forms of previously defined basic shilling attack models are proposed and the robustness of naïve Bayesian classifierbased collaborative filtering algorithm is examined. Real data-based experiments are conducted and each attack type's performance is explicated. Since existing measures, which are used to assess the success of shilling attacks, do not work on binary data, a new evaluation metric is proposed. Empirical outcomes show that it is possible to manipulate binary rating-based recommender systems' predictions by inserting malicious user profiles. Hence, it is shown that naïve Bayesian classifier-based collaborative filtering scheme is not robust against shilling attacks | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.isversionof | 10.1007/978-3-642-39878-0_19 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Naidie;Ve Bayesian Classifier | en_US |
dc.subject | Prediction | en_US |
dc.subject | Robustness | en_US |
dc.subject | Shilling | en_US |
dc.title | Robustness analysis of naïve Bayesian classifier-based collaborative filtering | en_US |
dc.type | article | en_US |
dc.relation.journal | Lecture Notes in Business Information Processing | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.volume | 152 | en_US |
dc.identifier.startpage | 202 | en_US |
dc.identifier.endpage | 209 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Kaleli, Cihan | |