Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCapan, G.
dc.contributor.authorYılmazel, Özgür
dc.date.accessioned2019-10-21T20:10:58Z
dc.date.available2019-10-21T20:10:58Z
dc.date.issued2011
dc.identifier.issn1613-0073
dc.identifier.urihttps://hdl.handle.net/11421/20011
dc.descriptionECML/PKDD Discovery Challenge Workshop 2011, DCW 2011 -- 5 September 2011 through 5 September 2011 -- Athens -- 101687en_US
dc.description.abstractRecommender systems are popular information filtering systems used in various domains. Cold-start problem is a key challenge in a recommender system. In newitem/existing-user case of the cold-start problem, which is recommendation of a recently-arrived item to a user with historical data, finding links between existing items with recently-arrived items is critical. Using VideoLectures.net Cold-Start Recommendation Challenge data, this paper includes a linear regression model to predict future co-viewing count between an existing item and a recently-arrived, not-yet-viewed item.en_US
dc.language.isoengen_US
dc.publisherCEUR-WSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleJoint features regression for Cold-Start Recommendation on VideoLectures.Neten_US
dc.typeconferenceObjecten_US
dc.relation.journalCEUR Workshop Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume770en_US
dc.identifier.startpage103en_US
dc.identifier.endpage109en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorYılmazel, Özgür


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster