Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKeser, Sinem Bozkurt
dc.contributor.authorYazıcı, Ahmet
dc.contributor.authorGünal, Serkan
dc.date.accessioned2019-10-21T20:10:58Z
dc.date.available2019-10-21T20:10:58Z
dc.date.issued2017
dc.identifier.isbn9781509064946
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2017.7960161
dc.identifier.urihttps://hdl.handle.net/11421/20013
dc.description25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- -- 128703en_US
dc.description.abstractThough global positioning system is a well-accepted technology for outdoor positioning, it is ineffective for indoor environment. Therefore, the search for effective and cheap solutions still continues. In this work, it is aimed to enhance the performance of indoor positioning system by a hybrid approach integrating WiFi and magnetic field sensor data. The positioning accuracy is improved by taking advantages of these sensor types. Besides, significant improvements in terms of computation time are achieved thanks to 'ReliefF' feature selection and 'k-means' clustering algorithms employed within the work. The results of the tests, which are obtained using Extreme Learning Machine models constituted for each region acquired after clustering, approves the effectiveness of the proposed methoden_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2017.7960161en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectClusteringen_US
dc.subjectFeature Selectionen_US
dc.subjectFingerprint Based Positioningen_US
dc.subjectIndoor Positioningen_US
dc.subjectMagnetic Fielden_US
dc.subjectWifien_US
dc.titleA hybrid fingerprint based indoor positioning with extreme learning machine [Aşiri Ögrenme Makinesi ile Hibrid Parmakizi Tabanli iç Ortam Konumlandirma]en_US
dc.typeconferenceObjecten_US
dc.relation.journal2017 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGünal, Serkan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster