Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇekik, Rasim
dc.contributor.authorTelceken, Sedat
dc.date.accessioned2019-10-21T20:10:59Z
dc.date.available2019-10-21T20:10:59Z
dc.date.issued2018
dc.identifier.issn1434-9922
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-319-75408-6_4
dc.identifier.urihttps://hdl.handle.net/11421/20023
dc.description.abstractThe presence of missing value in a dataset can affect the performance of an analysis system such as classifier. To solve this problem many methods have been proposed in different studies using different theorems, analysis systems and methods such as Neural Network (NN), k-Nearest Neighbor (k-NN), closest fit etc. In this paper, we propose novel method based on RST for solving the problem of missing value that was lost (e.g., was erased). After dataset filling with proposed method, it has been observed improvement the performance of used analysis systemsen_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.isversionof10.1007/978-3-319-75408-6_4en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Miningen_US
dc.subjectMissing Valueen_US
dc.subjectRough Seten_US
dc.titleNew method based on rough set for filling missing valueen_US
dc.typebookParten_US
dc.relation.journalStudies in Fuzziness and Soft Computingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume361en_US
dc.identifier.startpage41en_US
dc.identifier.endpage48en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster