dc.contributor.author | Banar, Müfide | |
dc.contributor.author | Güney, Yücel | |
dc.contributor.author | Özkan, Aysun | |
dc.contributor.author | Günkaya, Zerrin | |
dc.contributor.author | Bayrakçı, Eren | |
dc.contributor.author | Ulutaş, Derya | |
dc.date.accessioned | 2019-10-21T20:11:03Z | |
dc.date.available | 2019-10-21T20:11:03Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1687-9422 | |
dc.identifier.issn | 1687-9430 | |
dc.identifier.uri | https://dx.doi.org/10.1155/2016/1648920 | |
dc.identifier.uri | https://hdl.handle.net/11421/20056 | |
dc.description | WOS: 000371575200001 | en_US |
dc.description.abstract | Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW) was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100 degrees C. Hot mixtures were extruded into strips by using a lab-scale corotating twin screw extruder (L/D: 40) followed by die casting (2mm x 100 mm). Glass fleece or nonwoven polyester was used as reinforcement material and while die casting, both sides of the reinforcement materials were covered with bituminous mixture. Thickness, mass per unit area, tensile strength, elongation at yield, and hydraulic conductivity were used to characterize the geomembranes. Among all geomembranes, nonwoven polyester covered with 30% bitumen-70% boron waste clay mixture (PK-BTM30CW70) was found to be the most promising in terms of structure and mechanical behaviour. After that, consequences of its exposure to distilled water (DW), municipal solid waste landfill leachate (L-MSW), and hazardous waste landfill leachate (L-HW) were examined to use for an innovative impermeable liner on solid waste landfills. | en_US |
dc.description.sponsorship | TUBITAK (the Scientific and Technological Research Council of Turkey) [113Y122]; Anadolu University Scientific Research Projects Commission [1301F037] | en_US |
dc.description.sponsorship | This study was supported by TUBITAK (the Scientific and Technological Research Council of Turkey) under Grant no. 113Y122 and Anadolu University Scientific Research Projects Commission under Grant no. 1301F037. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Hindawi Publishing Corp | en_US |
dc.relation.isversionof | 10.1155/2016/1648920 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B) Production as Landfill Liner | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Polymer Science | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Banar, Müfide | |
dc.contributor.institutionauthor | Güney, Yücel | |
dc.contributor.institutionauthor | Özkan, Aysun | |
dc.contributor.institutionauthor | Günkaya, Zerrin | |