Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBenligiray, Burak
dc.contributor.authorAkakin, Hatice Çınar
dc.date.accessioned2019-10-21T20:11:43Z
dc.date.available2019-10-21T20:11:43Z
dc.date.issued2016
dc.identifier.isbn978-1-5090-1679-2
dc.identifier.urihttps://hdl.handle.net/11421/20303
dc.description24th Signal Processing and Communication Application Conference (SIU) -- MAY 16-19, 2016 -- Zonguldak, TURKEYen_US
dc.descriptionWOS: 000391250900317en_US
dc.description.abstractDeep convolutional neural networks is a recently developed method that yields very successful results in image classification. Deep neural networks, which have a high number of parameters, require a large amount of data to avoid overfitting during training. For applications in which the available data is not adequate to train a deep neural network from the scratch, deep neural networks trained for similar objectives can be used as a starting point. In this study, cell images are classified using a deep neural network trained to classify objects in natural images. Even though classification of natural images and cell images are very different objectives, cell images are able to be classified with 74.1% mean class accuracy. The results show that features used for visual classification by deep convolutional neural networks may be more universal than assumed.en_US
dc.description.sponsorshipIEEE, Bulent Ecevit Univ, Dept Elect & Elect Engn, Bulent Ecevit Univ, Dept Biomed Engn, Bulent Ecevit Univ, Dept Comp Engnen_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Convolutional Neural Networksen_US
dc.subjectImage Classificationen_US
dc.subjectHep-2 Cellsen_US
dc.subjectIndirect Immunofluorescenceen_US
dc.titleHEp-2 Cell Classification using a Deep Neural Network Trained for Natural Image Classificationen_US
dc.typeconferenceObjecten_US
dc.relation.journal2016 24th Signal Processing and Communication Application Conference (Siu)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1361en_US
dc.identifier.endpage1364en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBenligiray, Burak


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster