Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBenligiray, Burak
dc.contributor.authorÇakır, Halil İbrahim
dc.contributor.authorTopal, Cihan
dc.contributor.authorAkınlar, Cüneyt
dc.contributor.editorMurino, V
dc.contributor.editorPuppo, E
dc.date.accessioned2019-10-21T20:11:43Z
dc.date.available2019-10-21T20:11:43Z
dc.date.issued2015
dc.identifier.isbn978-3-319-23234-8 -- 978-3-319-23233-1
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-319-23234-8_21
dc.identifier.urihttps://hdl.handle.net/11421/20304
dc.description18th International Conference on Image Analysis and Processing (ICIAP) -- SEP 07-11, 2015 -- Genoa, ITALYen_US
dc.descriptionWOS: 000364991400021en_US
dc.description.abstractWe present a computer vision application that detects all coins in a test image, classifies each detected coin and computes the total amount. Coins to be counted are assumed to be lying on a flat surface. The application starts by estimating the extrinsic parameters of the input camera relative to this flat surface ([R|t]), whose intrinsic parameters (K) are assumed to be known beforehand. Then, a bilateral filter is applied to the image to remove textural details and noisy artifacts. Circles in the filtered image are detected and smaller concentric circles are eliminated. Finally, the geometric parameters (the center and the diameter) of the remaining circles are computed by back-projecting the reciprocal points from the circle contours using the estimated camera parameters. Having thus computed the diameter of each detected coin, the classification is performed by comparing the computed diameter with the actual coin diameters. The experiments performed with a dataset consisting of 50 images containing different combinations of Turkish coins show that the proposed method achieves 98% accuracy rate and works even when some coins are partially occluded, as the method does not use any texture information.en_US
dc.description.sponsorshipDatalogic, Google Inc, Centro Studi Gruppo Orizzonti Holding, Ansaldo Energia, EBIT Esaote, Softeco, eVS embedded Vis Syst S r l, 3DFlow S r l, Camelot Biomed Syst S r l, Ist Italiano Tecnologia, Pattern Anal & Comp Vis Dept, Univ Genoa, Univ Verona, Camera Commercio Genova, Comune Genovaen_US
dc.language.isoengen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.isversionof10.1007/978-3-319-23234-8_21en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoin Detectionen_US
dc.subjectCircle Detectionen_US
dc.subjectBilateral Filteringen_US
dc.subjectPose Estimationen_US
dc.subjectCamera Calibrationen_US
dc.titleCounting Turkish Coins with a Calibrated Cameraen_US
dc.typeconferenceObjecten_US
dc.relation.journalImage Analysis and Processing - Iciap 2015, Pt Iien_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume9280en_US
dc.identifier.startpage216en_US
dc.identifier.endpage226en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBenligiray, Burak
dc.contributor.institutionauthorTopal, Cihan
dc.contributor.institutionauthorAkınlar, Cüneyt


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster