dc.contributor.author | Doğan, Muzaffer | |
dc.contributor.author | Gerek, Ömer Nezih | |
dc.date.accessioned | 2019-10-21T20:11:47Z | |
dc.date.available | 2019-10-21T20:11:47Z | |
dc.date.issued | 2008 | |
dc.identifier.isbn | 978-1-4244-1998-2 | |
dc.identifier.uri | https://hdl.handle.net/11421/20320 | |
dc.identifier.uri | https://dx.doi.org/10.1109/SIU.2008.4632610 | en_US |
dc.description | IEEE 16th Signal Processing and Communications Applications Conference -- APR 20-22, 2008 -- Aydin, TURKEY | en_US |
dc.description | WOS: 000261359200074 | en_US |
dc.description.abstract | It's known that the transform matrix generated by Block Wavelet Transform (BWT) is orthogonal. Eigenvector matrix of the autocorrelation matrix obtained in Karhunen-Loeve transform is also orthogonal. This matrix is used for computing the features of signals. It's thought that BWT can be used in the same manner. A BWT obtained by finite number of filter coefficients will be advantegous. In this paper, a method for the computation of BWT filter coefficients by Steepest Descent algorithm will be proposed. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.language.iso | tur | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | 10.1109/SIU.2008.4632610 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Steepest Descent Algorithm For Block Wavelet Transform Filter Coefficients That Generate Orthogonal Transform Matrix | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2008 IEEE 16th Signal Processing, Communication and Applications Conference, Vols 1 and 2 | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.startpage | 296 | en_US |
dc.identifier.endpage | 299 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Gerek, Ömer Nezih | |