Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHocaoğlu, Fatih Onur
dc.contributor.authorGerek, Ömer Nezih
dc.contributor.authorKurban, Mehmet
dc.contributor.editorSandoval, F
dc.contributor.editorPrieto, A
dc.contributor.editorCabestany, J
dc.date.accessioned2019-10-21T20:11:59Z
dc.date.available2019-10-21T20:11:59Z
dc.date.issued2007
dc.identifier.isbn978-3-540-73006-4
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/11421/20375
dc.description9th International Work-Conference on Artificial Neural Networks -- JUN 20-22, 2007 -- San Sebastian, SPAINen_US
dc.descriptionWOS: 000247839300090en_US
dc.description.abstractIn this work, a two-dimensional (2-D) representation of the hourly solar radiation data is proposed. The model enables accurate forecasting using image prediction methods. One year solar radiation data that is acquired and collected between August 1, 2005 and July 30, 2006 in Iki Eylul campus of Anadolu University, and a 2-D representation is formed to construct an image data. The data is in raster scan form, so the rows and columns of the image matrix indicate days and hours, respectively. To test the forecasting efficiency of the model, first 1-D and 2-D optimal 3-tap linear filters are calculated and applied. Then, the forecasting is tested through three input one output feed-forward neural networks (NN). One year data is used for training, and 2 month(from August 1,2006 to September 30,2006) for testing. Optimal linear filters and NN models are compared in the sense of root mean square error (RMSE). It is observed that the 2-D model has advantages over the 1-D representation. Furthermore, the NN model accurately converges to forecasting errors smaller than the linear prediction filter results.en_US
dc.language.isoengen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA novel 2-d model approach for the prediction of hourly solar radiationen_US
dc.typeconferenceObjecten_US
dc.relation.journalComputational and Ambient Intelligenceen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume4507en_US
dc.identifier.startpage749en_US
dc.identifier.endpage+en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorHocaoğlu, Fatih Onur
dc.contributor.institutionauthorGerek, Ömer Nezih


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster