dc.contributor.author | Kurban, Mehmet | |
dc.contributor.author | Başaran Filik, Ümmühan | |
dc.contributor.editor | Ishikawa, M | |
dc.contributor.editor | Doya, K | |
dc.contributor.editor | Miyamoto, H | |
dc.date.accessioned | 2019-10-21T20:12:05Z | |
dc.date.available | 2019-10-21T20:12:05Z | |
dc.date.issued | 2008 | |
dc.identifier.isbn | 978-3-540-69159-4 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | https://hdl.handle.net/11421/20398 | |
dc.description | 14th International Conference on Neural Information Processing (ICONIP 2007) -- NOV 13-16, 2007 -- Kitakyushu, JAPAN | en_US |
dc.description | WOS: 000257315300073 | en_US |
dc.description.abstract | In this study, a new method is developed for the next day load forecasting integrating Artificial Neural Network(ANN) model with Weighted Frequency Bin Blocks (WFBB). After the WFBB is applied to all data, the results obtained from this analysis are used as the inputs in the ANN structure. However, the conventional ANN structure is also used for the next day load forecasting. The forecasting results obtained from ANN structure and the hybrid model are compared in the sense of root mean square error (RMSE). It is observed that the performance and the RMSE values for the hybrid model,the ANN model with WFBB, are smaller than the values for the conventional ANN structure. Furthermore, the new hybrid model forecasts better than the conventional ANN structure. The suitability of the proposed approach is illustrated through an application to actual load data taken from the Turkish Electric Power Company in 2002. | en_US |
dc.description.sponsorship | RIKEN Brain Sci Inst, Adv Telecommun Res Inst Int, Japan SOc Fuzzy Theory & Intelligent Informat, IEEE CIS Japan Chap, Fuzzy Log Syst Inst | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer-Verlag Berlin | en_US |
dc.relation.ispartofseries | LECTURE NOTES IN COMPUTER SCIENCE | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | A new approach for next day load forecasting integrating Artificial Neural Network model with Weighted Frequency Bin Blocks | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | Neural Information Processing, Part Ii | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 4985 | en_US |
dc.identifier.startpage | 703 | en_US |
dc.identifier.endpage | 712 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Başaran Filik, Ümmühan | |