Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorŞenel, Hakan Güray
dc.date.accessioned2019-10-21T20:12:16Z
dc.date.available2019-10-21T20:12:16Z
dc.date.issued2008
dc.identifier.isbn978-1-4244-2899-1
dc.identifier.urihttps://hdl.handle.net/11421/20438
dc.description4th International Conference on Information and Automation for Sustainability -- DEC 12-14, 2008 -- Colombo, SRI LANKAen_US
dc.descriptionWOS: 000265682000048en_US
dc.description.abstractGradient estimation using small support kernels is often used in edge detection algorithms. Small kernels such as Sobel and Roberts are often used in order to obtain gradient estimation in a short time. However, the limited number of samples that are used in the gradient estimation adversely affects the estimation performance under noise. Moreover, kernels larger than 3x3 cause interference of neighboring objects and localization problems. Another problem associated with small kernels is that they can not detect smooth edges. On the other hand, gradient estimation with large kernels at any image location yields better estimations due to more samples used in the computation. Also noise suppression can be handled in a better way. The goal of this paper is to devise a fuzzy topology based method that diminishes the problems of using larger kernels. The proposed method addresses the issues of interference of nearby objects and wide response area around edges for larger kennels. Results show that the proposed filter can be used instead of small support kernels since it reacts to both step and ramp edge models. Under heavy noise, topological gradient estimation is shown to perform superior to conventional gradient operators with same sizes.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEdge Detectionen_US
dc.subjectGradient Estimationen_US
dc.subjectFuzzy Topologyen_US
dc.titleImage Gradient Estimation with Wide Support Kernelsen_US
dc.typeconferenceObjecten_US
dc.relation.journal2008 4th International Conference On Information and Automation For Sustainability (Iciafs)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage270en_US
dc.identifier.endpage+en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster