dc.contributor.author | Günal, Serkan | |
dc.contributor.author | Ergin, Semih | |
dc.contributor.author | Gülmezoğlu, M. Bilginer | |
dc.contributor.author | Gerek, Ömer Nezih | |
dc.contributor.editor | Gunsel, B | |
dc.contributor.editor | Jain, AK | |
dc.contributor.editor | Tekalp, AM | |
dc.date.accessioned | 2019-10-21T20:41:00Z | |
dc.date.available | 2019-10-21T20:41:00Z | |
dc.date.issued | 2006 | |
dc.identifier.isbn | 3-540-39392-7 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | https://hdl.handle.net/11421/20608 | |
dc.identifier.uri | https://dx.doi.org/10.1007/11848035_84 | en_US |
dc.description | International Workshop on Multimedia Content Representation, Classification and Security (MRCS 2006) -- SEP 11-13, 2006 -- Istanbul, TURKEY | en_US |
dc.description | WOS: 000241429800081 | en_US |
dc.description.abstract | Electronic mail is an important communication method for most computer users. Spam e-mails however consume bandwidth resource, fill-up server storage and are also a waste of time to tackle. The general way to label an e-mail as spam or non-spam is to set up a finite set of discriminative features and use a classifier for the detection. In most cases, the selection of such features is empirically verified. In this paper, two different methods are proposed to select the most discriminative features among a set of reasonably arbitrary features for spam e-mail detection. The selection methods are developed using the Common Vector Approach (CVA) which is actually a subspace-based pattern classifier. Experimental results indicate that the proposed feature selection methods give considerable reduction on the number of features without affecting recognition rates. | en_US |
dc.description.sponsorship | Int Assoc Pattern Recognit, Istanbul Tech Univ, TUBITAK | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer-Verlag Berlin | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.relation.isversionof | 10.1007/11848035_84 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | On feature extraction for spam e-mail detection | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | Multimedia Content Representation, Classification and Security | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 4105 | en_US |
dc.identifier.startpage | 635 | en_US |
dc.identifier.endpage | 642 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Günal, Serkan | |
dc.contributor.institutionauthor | Gerek, Ömer Nezih | |