Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇevikalp, Hakan
dc.contributor.authorYavuz, Hasan Serhan
dc.contributor.authorBarkana, Atalay
dc.date.accessioned2019-10-21T20:41:11Z
dc.date.available2019-10-21T20:41:11Z
dc.date.issued2006
dc.identifier.issn2219-5491
dc.identifier.urihttps://hdl.handle.net/11421/20693
dc.descriptionISL Altran;Galileo Avionics;Selex Sistemi Intergrati;STMicroelectronics;University of Pisaen_US
dc.description14th European Signal Processing Conference, EUSIPCO 2006 -- 4 September 2006 through 8 September 2006 -- Florence -- 90688en_US
dc.description.abstractThe Class-Featuring Information Compression (CLAFIC) is a pattern classification method which uses a linear subspace for each class. In order to apply the CLAFIC method to image recognition problems, 2D image matrices must be transformed into 1D vectors. In this paper, we propose new subspace classifiers to apply the conventional CLAFIC method directly to the image matrices. The proposed methods yield easier evaluation of correlation and covariance matrices, which in turn speeds up the training and testing phases. Moreover, experimental results on the AR and the ORL face databases also show that recognition performances of the proposed methods are typically better than recognition performances of other subspace classifiers given in the paper.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTwo dimensional (2D) subspace classifiers for image recognitionen_US
dc.typeconferenceObjecten_US
dc.relation.journalEuropean Signal Processing Conferenceen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBarkana, Atalay


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster