Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBenligiray, Burak
dc.contributor.authorAkakin, H. C.
dc.date.accessioned2019-10-21T20:41:20Z
dc.date.available2019-10-21T20:41:20Z
dc.date.issued2016
dc.identifier.isbn9781509016792
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2016.7496001
dc.identifier.urihttps://hdl.handle.net/11421/20751
dc.description24th Signal Processing and Communication Application Conference, SIU 2016 -- 16 May 2016 through 19 May 2016 -- -- 122605en_US
dc.description.abstractDeep convolutional neural networks is a recently developed method that yields very successful results in image classification. Deep neural networks, which have a high number of parameters, require a large amount of data to avoid overfitting during training. For applications in which the available data is not adequate to train a deep neural network from the scratch, deep neural networks trained for similar objectives can be used as a starting point. In this study, cell images are classified using a deep neural network trained to classify objects in natural images. Even though classification of natural images and cell images are very different objectives, cell images are able to be classified with 74.1% mean class accuracy. The results show that features used for visual classification by deep convolutional neural networks may be more universal than assumeden_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2016.7496001en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Convolutional Neural Networksen_US
dc.subjectHep-2 Cellsen_US
dc.subjectImage Classificationen_US
dc.subjectIndirect Immunofluorescenceen_US
dc.titleHEp-2 cell classification using a deep neural network trained for natural image classification [Dogal Imge Siniflandirmak için Egitilmis bir Derin Sinir Agi ile HEp-2 Hücresi Siniflandirilmasi]en_US
dc.typeconferenceObjecten_US
dc.relation.journal2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1361en_US
dc.identifier.endpage1364en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBenligiray, Burak


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster