Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBenligiray, Burak
dc.contributor.authorGerek, Ömer Nezih
dc.date.accessioned2019-10-21T20:41:24Z
dc.date.available2019-10-21T20:41:24Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404196
dc.identifier.urihttps://hdl.handle.net/11421/20778
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780en_US
dc.description.abstractAerial power lines used to conduct electrical energy pose a significant risk of accidents for aerial vehicles. In this study, we propose a method to highlight the power lines in an aerial image. The visual feedback provided by this method is expected to aid the pilot in avoiding power lines. To implement the method, a convolutional neural network is trained to classify images into ones that contain power lines and not. In the case that this network infers that power lines are present in an image, the partial derivative of the classification loss function with respect to the image is used to produce a type of saliency map. By superposing this saliency map on the original image, the power lines are highlighted. Various backpropagation methods were tested to produce the saliency map, and it has been observed that guided backpropagation has performed best in this task. Since the network used in the proposed method is only trained for classification, the locations of the power lines in the dataset do not need to be annotateden_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2018.8404196en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectPower Line Detectionen_US
dc.subjectSaliency Mapen_US
dc.titleVisualization of power lines recognized in aerial images using deep learning [Havadan alinan görüntülerde derin ögrenme ile taninan güç hatlarinin görsell?stirilmesi]en_US
dc.typeconferenceObjecten_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBenligiray, Burak
dc.contributor.institutionauthorGerek, Ömer Nezih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster