Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzbey, N.
dc.contributor.authorTopal, C.
dc.date.accessioned2019-10-21T20:41:25Z
dc.date.available2019-10-21T20:41:25Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404541
dc.identifier.urihttps://hdl.handle.net/11421/20781
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780en_US
dc.description.abstractThe human face is the subject of many studies in the field of artificial vision because of the high amount of semantic information. The most common of the studies carried out in this area are face analysis and expression. Automatic face recognition is used in many applications such as human-computer interaction, behavior analysis and marketing. In this study, it is aimed to use appearance based features obtained from the landmarks for instant facial expression recognition. In the study, the local binary pattern (LBP) attributes obtained from the surrounding of the landmarks using active shape models are used. In order to find the most discriminating subset of the obtained attributes, the selection of the attributes has been applied for improve the recognition rate. It has been shown that the method proposed in experiments with 10-fold cross-validation with the Cohn-Kanade dataset (CK+) which is containing seven different expression classes achieves %89.71 success rateen_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2018.8404541en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCohn-Kanade Dataseten_US
dc.subjectFacial Expression Recognitionen_US
dc.subjectFeature Selectionen_US
dc.subjectLocal Binary Patternsen_US
dc.subjectSequential Forward Feature Selectionen_US
dc.titleExpression recognition with appearance-based features of facial landmarks [Yuz nirengi noktalarinin görünüş öznitelikleri ile ifade tanima]en_US
dc.typeconferenceObjecten_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster