Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGacav, Caner
dc.contributor.authorBenligiray, Burak
dc.contributor.authorÖzkan, K.
dc.contributor.authorTopal, Cihan
dc.date.accessioned2019-10-21T20:41:26Z
dc.date.available2019-10-21T20:41:26Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404811
dc.identifier.urihttps://hdl.handle.net/11421/20789
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780en_US
dc.description.abstractFacial expression recognition is a popular computer vision subject that has many applications such as humancomputer interaction and behavior analysis. As for many computer vision problems, lighting and contrast differences increase the difficulty of the problem. Especially the non-planar structure of the face, protruding regions such as the nose and chin and recessed regions such as eye sockets cause variations in lighting. Another problem with facial expression recognition problems is that the multi-scale detection methods do not align the faces accurately. This leads to comparing features that are extracted from different facial regions, which degrades performance. FHOG features are a contrast-sensitive variation of histogram oriented gradients (HOG) features, which perform well at object detection applications. In this study, the performance of FHOG features at facial expression recognition is investigated. Additionally, aligning with respect to the facial landmarks is proposed to prevent performance degradation due to misalignment. The proposed method is shown to deliver 93% accuracy in facial expression recognition in the extended Cohn-Kanade dataseten_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2018.8404811en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtended Cohn-Kanade Dataseten_US
dc.subjectFacial Expression Recognitionen_US
dc.subjectFelzenszwalb'S Histogram Of Oriented Gradientsen_US
dc.subjectSupport Vector Machinesen_US
dc.titleFacial expression recognition with FHOG features [FHOG öznitelikleri ile yüz ifadesi tanima]en_US
dc.typeconferenceObjecten_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBenligiray, Burak
dc.contributor.institutionauthorTopal, Cihan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster