Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖztürk, Gürkan
dc.contributor.authorÇiftçi, Mehmet Tahir
dc.date.accessioned2019-10-21T20:41:42Z
dc.date.available2019-10-21T20:41:42Z
dc.date.issued2015
dc.identifier.issn1547-5816
dc.identifier.issn1553-166X
dc.identifier.urihttps://dx.doi.org/10.3934/jimo.2015.11.921
dc.identifier.urihttps://hdl.handle.net/11421/20858
dc.descriptionWOS: 000344081200012en_US
dc.description.abstractIn this study, a new algorithm based on polyhedral conic functions (PCFs) is developed to solve multi-class supervised data classification problems. The k PCFs are constructed for each class in order to separate it from the rest of the data set. The k-means algorithm is applied to find vertices of PCFs and then a linear programming model is solved to calculate the parameters of each PCF. The separating functions for each class are obtained as a pointwise minimum of the PCFs. A class label is assigned to the test point according to its minimum value over all separating functions. In order to demonstrate the performance of the proposed algorithm, it is applied to solve classification problems in publicly available data sets. The comparative results with some mainstream classifiers are presented.en_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1103F035]en_US
dc.description.sponsorshipThe authors would like to thank two anonymous referees for their criticism and comments which allowed to improve the quality of the paper. The authors also thank Mr. Emre Cimen for his help in coding the proposed algorithm. This study was supported by Anadolu University Scientific Research Projects Commission under the grant no:1103F035.en_US
dc.language.isoengen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.isversionof10.3934/jimo.2015.11.921en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectPolyhedral Conic Cunctionsen_US
dc.subjectK-Meansen_US
dc.subjectLinear Programmingen_US
dc.subjectComputational Learning Theoryen_US
dc.titleClustering Based Polyhedral Conic Functions Algorithm in Classificationen_US
dc.typearticleen_US
dc.relation.journalJournal of Industrial and Management Optimizationen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.startpage921en_US
dc.identifier.endpage932en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster