Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTapkın, Serkan
dc.contributor.authorÇevik, Abdükadir
dc.contributor.authorÖzcan, Şenol
dc.date.accessioned2019-10-21T21:11:31Z
dc.date.available2019-10-21T21:11:31Z
dc.date.issued2012
dc.identifier.issn1516-1439
dc.identifier.urihttps://dx.doi.org/10.1590/S1516-14392012005000117
dc.identifier.urihttps://hdl.handle.net/11421/21013
dc.descriptionWOS: 000311554400007en_US
dc.description.abstractThe testing procedure in order to determine the precise mechanical testing results in Marshall design is very time consuming. Also, the physical properties of the asphalt samples are obtained by further calculations. Therefore if the researchers can obtain the stability and flow values of a standard mixture with the help of mechanical testing, the rest of the calculations will just be mathematical manipulations. Determination of mechanical testing parameters such as strain accumulation, creep stiffness, stability, flow and Marshall Quotient of dense bituminous mixtures by utilising artificial neural networks is important in the sense that, cumbersome testing procedures can be avoided with the help of the closed form solutions provided in this study. Marshall specimens, prepared by utilising polypropylene fibers, were tested by universal testing machine carrying out static creep tests to investigate the rutting potential of these mixtures. On the very well trained data basis, artificial neural network analyses were carried out to propose five separate models for mechanical testing properties. The explicit formulation of these five main mechanical testing properties by closed form solutions are presented for further use for researches.en_US
dc.language.isoengen_US
dc.publisherUniversity Fed Sao Carlos, Dept Engenharia Materialsen_US
dc.relation.isversionof10.1590/S1516-14392012005000117en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMarshall Designen_US
dc.subjectStatic Creep Testen_US
dc.subjectBitumen Modificationen_US
dc.subjectPolypropylene Fibersen_US
dc.subjectStrain Accumulationen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectClosed Form Solutionsen_US
dc.titleUtilising Neural Networks and Closed Form Solutions to Determine Static Creep Behaviour and Optimal Polypropylene Amount in Bituminous Mixturesen_US
dc.typearticleen_US
dc.relation.journalMaterials Research-Ibero-American Journal of Materialsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume15en_US
dc.identifier.issue6en_US
dc.identifier.startpage865en_US
dc.identifier.endpage883en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster