Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTapkın, Serkan
dc.contributor.authorÇevik, Abdükadir
dc.contributor.authorUşar, Ün
dc.date.accessioned2019-10-21T21:11:31Z
dc.date.available2019-10-21T21:11:31Z
dc.date.issued2010
dc.identifier.issn0957-4174
dc.identifier.urihttps://dx.doi.org/10.1016/j.eswa.2009.12.042
dc.identifier.urihttps://hdl.handle.net/11421/21016
dc.descriptionWOS: 000276532600069en_US
dc.description.abstractThis study presents an application of neural networks (NN) for the prediction of Marshall test results for polypropylene (PP) modified asphalt mixtures. PP fibers are used to modify the bituminous binder in order to improve the physical and mechanical properties of the resulting asphaltic mixture. Marshall stability and flow tests were carried out on specimens fabricated with different type of PP fibers and also waste PP at optimum bitumen content. It has been shown that the addition of polypropylene fibers results in the improved Marshall stabilities and Marshall Quotient values, which is a kind of pseudo stiffness. The proposed NN model uses the physical properties of standard Marshall specimens such as PP type, PP percentage, bitumen percentage, specimen height, unit weight, voids in mineral aggregate, voids filled with asphalt and air voids in order to predict the Marshall stability, flow and Marshall Quotient values obtained at the end of mechanical tests. The explicit formulation of stability, flow and Marshall Quotient based on the proposed NN model is also obtained and presented for further use by researchers. Moreover parametric analyses have been carried out. The results of parametric analyses were used to evaluate mechanical properties of the Marshall specimens in a quite well manneren_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.eswa.2009.12.042en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural Networksen_US
dc.subjectPolypropyleneen_US
dc.subjectStabilityen_US
dc.subjectFlowen_US
dc.subjectMarshall Quotienten_US
dc.subjectParametric Studyen_US
dc.titlePrediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networksen_US
dc.typearticleen_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.startpage4660en_US
dc.identifier.endpage4670en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster