Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkakin, Hatice Çınar
dc.contributor.authorGürcan, Metin N.
dc.date.accessioned2019-10-21T20:11:31Z
dc.date.available2019-10-21T20:11:31Z
dc.date.issued2012
dc.identifier.issn1089-7771
dc.identifier.issn1558-0032
dc.identifier.urihttps://dx.doi.org/10.1109/TITB.2012.2185829
dc.identifier.urihttps://hdl.handle.net/11421/20243
dc.descriptionWOS: 000305979500026en_US
dc.descriptionPubMed ID: 22311866en_US
dc.description.abstractIn this paper, we describe the design and development of a multitiered content-based image retrieval (CBIR) system for microscopic images utilizing a reference database that contains images of more than one disease. The proposed CBIR system uses a multitiered approach to classify and retrieve microscopic images involving their specific subtypes, which are mostly difficult to discriminate and classify. This system enables both multi-image query and slide-level image retrieval in order to protect the semantic consistency among the retrieved images. New weighting terms, inspired from information retrieval theory, are defined for multiple-image query and retrieval. The performance of the system was tested on a dataset including 1666 imaged high power fields extracted from 57 follicular lymphoma (FL) tissue slides with three subtypes and 44 neuroblastoma (NB) tissue slides with four subtypes. Each slide is semantically annotated according to their subtypes by expert pathologists. By using leave-one-slide out testing scheme, the multi-image query algorithm with the proposed weighting strategy achieves about 93% and 86% of average classification accuracy at the first rank retrieval, outperforming the image-level retrieval accuracy by about 38 and 26 percentage points, for FL and NB diseases, respectively.en_US
dc.description.sponsorshipNational Cancer Institute [R01CA134451]en_US
dc.description.sponsorshipThis work was supported in part by the National Cancer Institute under Award R01CA134451.en_US
dc.language.isoengen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.isversionof10.1109/TITB.2012.2185829en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectContent-Based Image Retrieval (Cbir)en_US
dc.subjectInformation Retrieval (Ir)en_US
dc.subjectMicroscopy Multi-Image Queriesen_US
dc.subjectWeighting Scoresen_US
dc.titleContent-Based Microscopic Image Retrieval System for Multi-Image Queriesen_US
dc.typearticleen_US
dc.relation.journalIEEE Transactions On Information Technology in Biomedicineen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume16en_US
dc.identifier.issue4en_US
dc.identifier.startpage758en_US
dc.identifier.endpage769en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster