Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇakır, Serdar
dc.contributor.authorAytaç, Tayfun
dc.contributor.authorYıldırım, Alper
dc.contributor.authorGerek, Ömer Nezih
dc.date.accessioned2019-10-21T20:11:53Z
dc.date.available2019-10-21T20:11:53Z
dc.date.issued2011
dc.identifier.issn0091-3286
dc.identifier.urihttps://dx.doi.org/10.1117/1.3640826
dc.identifier.urihttps://hdl.handle.net/11421/20350
dc.descriptionWOS: 000296559700042en_US
dc.description.abstractAn offline feature selection and evaluation mechanism is used in order to develop a robust visual tracking scheme for sea-surface and aerial targets. The covariance descriptors, known to constitute an efficient signature set in object detection and classification problems, are used in the feature extraction phase of the proposed scheme. The performance of feature sets are compared using support vector machines, and those resulting in the highest detection performance are used in the covariance based tracker. The tracking performance is evaluated in different scenarios using different performance measures with respect to ground truth target positions. The proposed tracking scheme is observed to track sea-surface and aerial targets with plausible accuracies, and the results show that gradient-based features, together with the pixel locations and intensity values, provide robust target tracking in both surveillance scenarios. The performance of the proposed tracking strategy is also compared with some well-known trackers including correlation, Kanade-Lucas-Tomasi feature, and scale invariant feature transform-based trackers. Experimental results and observations show that the proposed target tracking scheme outperforms other trackers in both air and sea surveillance scenariosen_US
dc.description.sponsorshipTUBITAK [109A001, 1007]en_US
dc.description.sponsorshipThis study is supported by Project No. 109A001 in the framework of TUBITAK 1007 Program. The authors would like to thank Dr. S. Gokhun Tanyer for his support in this study, A. Onur Karali for his efforts in video capture and helpful discussions, and the anonymous reviewer for his/her constructive critiques and suggestions.en_US
dc.language.isoengen_US
dc.publisherSpie-Soc Photo-Optical Instrumentation Engineersen_US
dc.relation.isversionof10.1117/1.3640826en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTarget Trackingen_US
dc.subjectFeature Selectionen_US
dc.subjectFeature Evaluationen_US
dc.subjectCovariance Trackeren_US
dc.subjectTarget Detectionen_US
dc.subjectSurveillance Systemsen_US
dc.titleClassifier-based offline feature selection and evaluation for visual tracking of sea-surface and aerial targetsen_US
dc.typearticleen_US
dc.relation.journalOptical Engineeringen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume50en_US
dc.identifier.issue10en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGerek, Ömer Nezih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster