Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGermen, Emin
dc.contributor.authorBaşaran, Murat
dc.contributor.authorFidan, Mehmet
dc.date.accessioned2019-10-21T20:11:57Z
dc.date.available2019-10-21T20:11:57Z
dc.date.issued2014
dc.identifier.issn0888-3270
dc.identifier.urihttps://dx.doi.org/10.1016/j.ymssp.2013.12.002
dc.identifier.urihttps://hdl.handle.net/11421/20367
dc.descriptionWOS: 000333857700004en_US
dc.description.abstractThe induction motors, which have simple structures and design, are the essential elements of the industry. Their long-lasting utilization in critical processes possibly causes unavoidable mechanical and electrical defects that can deteriorate the production. The early diagnosis of the defects in induction motors is crucial in order to avoid interruption of manufacturing. In this work, the mechanical and the electrical faults which can be observed frequently on the induction motors are classified by means of analysis of the acoustic data of squirrel cage induction motors recorded by using several microphones simultaneously since the true nature of propagation of sound around the running motor provides specific clues about the types of the faults. In order to reveal the traces of the faults, multiple microphones are placed in a hemispherical shape around the motor. Correlation and wavelet-based analyses are applied for extracting necessary features from the recorded data The features obtained from same types of motors with different kind of faults are used for the classification using the Self-Organizing Maps method. As it is described in this paper, highly motivating results are obtained both on the separation of healthy motor and faulty one and on the classification of fault typesen_US
dc.language.isoengen_US
dc.publisherAcademic Press LTD- Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.ymssp.2013.12.002en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInduction Motorsen_US
dc.subjectFault Detectionen_US
dc.subjectKohonen Somen_US
dc.subjectAcoustic Signal Processingen_US
dc.titleSound based induction motor fault diagnosis using Kohonen self-organizing mapen_US
dc.typearticleen_US
dc.relation.journalMechanical Systems and Signal Processingen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume46en_US
dc.identifier.issue1en_US
dc.identifier.startpage45en_US
dc.identifier.endpage58en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGermen, Emin
dc.contributor.institutionauthorFidan, Mehmet


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster