Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHocaoğlu, Fatih Onur
dc.contributor.authorGerek, Ömer Nezih
dc.contributor.authorKurban, Mehmet
dc.date.accessioned2019-10-21T20:12:00Z
dc.date.available2019-10-21T20:12:00Z
dc.date.issued2008
dc.identifier.issn0038-092X
dc.identifier.urihttps://dx.doi.org/10.1016/j.solener.2008.02.003
dc.identifier.urihttps://hdl.handle.net/11421/20376
dc.descriptionWOS: 000258047600006en_US
dc.description.abstractIn this work, the hourly solar radiation data collected during the period August 1, 2005-July 30, 2006 from the solar observation station in Iki Eylul campus area of Eskisehir region are studied. A two-dimensional (2-D) representation model of the hourly solar radiation data is proposed. The model provides a unique and compact visualization of the data for inspection, and enables accurate forecasting using image processing methods. Using the hourly solar radiation data mentioned above, the image model is formed in raster scan form with rows and columns corresponding to days and hours, respectively. Logically, the between-day correlations along the same hour segment provide the vertical correlations of the image, which is not available in the regular I-D representation. To test the forecasting efficiency of the model, nine different linear filters with various filter-tap configurations are optimized and tested. The results provide the necessary correlation model and prediction directions for obtaining the optimum prediction template for forecasting. Next, the 2-D forecasting performance is tested through feed-forward neural networks (NN) using the same data. The optimal linear filters and NN models are compared in the sense of root mean square error (RMSE). It is observed that the 2-D model has pronounced advantages over the I-D representation for both linear and NN prediction methods. Due to the capability of depicting the nonlinear behavior of the input data, the NN models are found to achieve better forecasting results than linear prediction filters in both 1-D and 2-Den_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.isversionof10.1016/j.solener.2008.02.003en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolar Radiationen_US
dc.subjectForecastingen_US
dc.subjectLinear Filteren_US
dc.subjectNnen_US
dc.titleHourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networksen_US
dc.typearticleen_US
dc.relation.journalSolar Energyen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume82en_US
dc.identifier.issue8en_US
dc.identifier.startpage714en_US
dc.identifier.endpage726en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorHocaoğlu, Fatih Onur
dc.contributor.institutionauthorGerek, Ömer Nezih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster