Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKoç, Mehmet
dc.contributor.authorBarkana, Atalay
dc.contributor.authorGerek, Ömer Nezih
dc.date.accessioned2019-10-21T20:12:05Z
dc.date.available2019-10-21T20:12:05Z
dc.date.issued2010
dc.identifier.issn0020-0255
dc.identifier.urihttps://dx.doi.org/10.1016/j.ins.2010.06.027
dc.identifier.urihttps://hdl.handle.net/11421/20395
dc.descriptionWOS: 000281174800020en_US
dc.description.abstractIn this paper a novel computation method is proposed to perform the common vector approach (CVA) faster than its conventional implementation in pattern recognition. While conventional CVA calculations perform the classification with respect to the distance between vectors, the new method performs the classification using scalars. A theoretical proof of the equivalence of the proposed method is provided. Next, in order to verify the numerical equivalence of the proposed computation method to the conventional (vector-based) method, numerical experiments are conducted over three different face databases, namely the AR Database, extended Yale Face Database B, and FERET Database. Since the computational gain may depend on (i) the dimension of the feature vectors, (ii) the number of feature vectors used in training, and (iii) the number of classes, the effects of these items are clearly verified via these databases. Our theoretically equivalent (but faster) method provided no difference in the classification rates despite its improved classification speed as compared to the classical implementation of CVA. The new method is found to be about 2.1-3.0 times faster than the conventional CVA implementation for the AR face database, 1.9-3.3 times faster for the extended Yale Face Database B, and 1.9-3.1 times faster for the FERET Databaseen_US
dc.description.sponsorshipDOD Counterdrug Technology Development Program Officeen_US
dc.description.sponsorshipPortions of the research in this paper use the FERET Database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office. We also thank the reviewers of the manuscript for their valuable comments and suggestions.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.isversionof10.1016/j.ins.2010.06.027en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCommon Vector Approachen_US
dc.subjectFast Classification Algorithmen_US
dc.subjectClassifier Implementationen_US
dc.subjectFace Recognitionen_US
dc.titleA fast method for the implementation of common vector approachen_US
dc.typearticleen_US
dc.relation.journalInformation Sciencesen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume180en_US
dc.identifier.issue20en_US
dc.identifier.startpage4084en_US
dc.identifier.endpage4098en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBarkana, Atalay
dc.contributor.institutionauthorGerek, Ömer Nezih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster