Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKurban, Mehmet
dc.contributor.authorBaşaran Filik, Ümmühan
dc.date.accessioned2019-10-21T20:12:07Z
dc.date.available2019-10-21T20:12:07Z
dc.date.issued2009
dc.identifier.issn1349-4198
dc.identifier.issn1349-418X
dc.identifier.urihttps://hdl.handle.net/11421/20404
dc.descriptionWOS: 000265260800007en_US
dc.description.abstractIn this study, two different hybrid approaches based on Artificial Neural Network (ANN) models with Autoregressive (AR) method and Weighted Frequency Bin Blocks (WFBB), are used for next day load forecasting. To compare with the hybrid approaches and conventional models, the next day load forecasting is also performed by using AR and ANN models, separately. In the first hybrid approach, ANN model with AR method, the results of the AR method applied to all data taken from Turkish Electric Power Company and Electricity Generation Company, is used as an only additional input for ANN model. In this approach, the ANN structure has two layers composed of 49 and 24 neurons for input and output layers, respectively. In the second hybrid approach, ANN model with WFBB, the results obtained from WFBB are used for all inputs in the ANN. model. In this approach, input and output layers in the ANN structure are composed of 48 and 24 neurons, respectively. Feed Forward Back Propagation (FFBP) is chosen for all neural network models in this study. The forecasting results obtained from AR, ANN and the two hybrid models are compared to each other in the sense of root mean square error (RMSE). It is observed that the RMSE values for the hybrid approaches are smaller titan the conventional models. Then, the hybrid models forecast better than the conventional models.en_US
dc.language.isoengen_US
dc.publisherIcic Internationalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLoad Forecastingen_US
dc.subjectAutoregressiveen_US
dc.subjectArtificial Neural Networken_US
dc.subjectWeighted Frequency Bin Blocksen_US
dc.titleNext Day Load Forecasting Using Artificial Neural Network Models With Autoregression and Weighted Frequency Bin Blocksen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Innovative Computing Information and Controlen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume5en_US
dc.identifier.issue4en_US
dc.identifier.startpage889en_US
dc.identifier.endpage898en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBaşaran Filik, Ümmühan


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster