Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkçay, Hüseyin
dc.contributor.authorFilik, Tansu
dc.date.accessioned2019-10-21T20:41:23Z
dc.date.available2019-10-21T20:41:23Z
dc.date.issued2019
dc.identifier.issn2213-1388
dc.identifier.urihttps://dx.doi.org/10.1016/j.seta.2019.07.003
dc.identifier.urihttps://hdl.handle.net/11421/20769
dc.description.abstractIn this paper, we study properties of two wind speed forecasting schemes from mid-to-short term wind velocity measurements. The measurements are assumed to be collected over time intervals shorter than the ones previously studied by the authors. Two application examples illustrate the properties of these schemes. In the first example, historical data originating from five meteorological stations are considered. This example demonstrates that the first scheme outperforms persistence and artificial neural network (ANN) predictors by a large margin for all step sizes considered. This result enlarges domain of application of the first forecasting scheme from multi-step-ahead only to one and multi-step-ahead and from long-term observations only to long and mid-term observations. A local wildly fluctuating dense data set obtained from a renewable energy research home unit is studied in the second example to check the performance of the first scheme under non-standard operating conditions. The second scheme is a compressive subspace algorithm developed recently for innovation models.The second scheme complements the first scheme in that it uses short-term observations and outperforms the multi-step-ahead persistence and the ANN predictorsen_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionof10.1016/j.seta.2019.07.003en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectNuclear Normen_US
dc.subjectRegularizationen_US
dc.subjectSparsityen_US
dc.subjectSubspace Methoden_US
dc.subjectWind Speed Forecastingen_US
dc.titleWind speed forecasting by subspace and nuclear norm optimization based algorithmsen_US
dc.typearticleen_US
dc.relation.journalSustainable Energy Technologies and Assessmentsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume35en_US
dc.identifier.startpage139en_US
dc.identifier.endpage147en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorAkçay, Hüseyin
dc.contributor.institutionauthorFilik, Tansu


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster