dc.contributor.author | Çiftçi, S. | |
dc.contributor.author | Kaya, R. | |
dc.contributor.author | Ferrar, J. C. | |
dc.date.accessioned | 2019-10-19T21:03:41Z | |
dc.date.available | 2019-10-19T21:03:41Z | |
dc.date.issued | 1988 | |
dc.identifier.issn | 0047-2468 | |
dc.identifier.uri | https://dx.doi.org/10.1007/BF01222385 | |
dc.identifier.uri | https://hdl.handle.net/11421/15640 | |
dc.description.abstract | The purpose of this paper is to give a short proof of 4-transitivity in Moufang planes. This proof originated in the observation of the two first name authors that the standard Moufang identities, together with the identity (1) x~-1(y(xz)) = (x-1(yx)z, which is asserted in [2, p. 103] to hold in Cayley-Dickson division algebras, can be applied to give a particularly simple algebraic proof of the fact that the collineation group of a Moufang plane is transitive on four-points. Unfortunately, as pointed out by H. Karzel and demonstrated here in Proposition 1, (1) does not hold in Cayley-Dickson algebras. Nevertheless, the algebraic proof of transitivity remains valid after slight modifications and is given here as Theorem 1 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Birkhäuser-Verlag | en_US |
dc.relation.isversionof | 10.1007/BF01222385 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | On 4-transitivity in the Moufang plane | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Geometry | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Bilimleri Enstitüsü | en_US |
dc.identifier.volume | 31 | en_US |
dc.identifier.issue | 1.Şub | en_US |
dc.identifier.startpage | 65 | en_US |
dc.identifier.endpage | 68 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |