Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇiftçi, S.
dc.contributor.authorKaya, R.
dc.contributor.authorFerrar, J. C.
dc.date.accessioned2019-10-19T21:03:41Z
dc.date.available2019-10-19T21:03:41Z
dc.date.issued1988
dc.identifier.issn0047-2468
dc.identifier.urihttps://dx.doi.org/10.1007/BF01222385
dc.identifier.urihttps://hdl.handle.net/11421/15640
dc.description.abstractThe purpose of this paper is to give a short proof of 4-transitivity in Moufang planes. This proof originated in the observation of the two first name authors that the standard Moufang identities, together with the identity (1) x~-1(y(xz)) = (x-1(yx)z, which is asserted in [2, p. 103] to hold in Cayley-Dickson division algebras, can be applied to give a particularly simple algebraic proof of the fact that the collineation group of a Moufang plane is transitive on four-points. Unfortunately, as pointed out by H. Karzel and demonstrated here in Proposition 1, (1) does not hold in Cayley-Dickson algebras. Nevertheless, the algebraic proof of transitivity remains valid after slight modifications and is given here as Theorem 1en_US
dc.language.isoengen_US
dc.publisherBirkhäuser-Verlagen_US
dc.relation.isversionof10.1007/BF01222385en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn 4-transitivity in the Moufang planeen_US
dc.typearticleen_US
dc.relation.journalJournal of Geometryen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.identifier.volume31en_US
dc.identifier.issue1.Şuben_US
dc.identifier.startpage65en_US
dc.identifier.endpage68en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster