Korelasyon Matrislerinin Eşitliği Testinde Permütasyon Testi
Özet
Bu çalışmada, farklı yığınlardaki P tane tesadüfi değişken arasındaki korelasyon matrislerinin eşitliği hipotezinin test edilmesinde permütasyonların oluşturulmasına dayalı Shipley’in önerdiği test istatistiğinin I. tip hata olasılıkları Monte-Carlo yöntemiyle hesaplanmıştır. Normal ve karma-normal dağılımlı üç yığın için ayrı ayrı incelenen deneysel I.tip hata olasılıkları, örnek çapları 3 ile 10 arasında değişkenlik gösterirken ve anlamlılık düzeyi 0.05, 0.10 ve 0.20 iken elde edilmiştir. Simülasyon sonuçlarına göre, normal dağılan veri için tahmin edilen deneysel olasılık değerleri beklenen α ’nın çok yakınında değerler vermiştir. Karma-normal veri için sonuçların tümünün α ’dan küçük değerler olması, test istatistiğinin normal dağılmayan (karma-normal) veri için de sağlam olduğunu göstermiştir. In this study, the emprical rejection levels of the Shipley’s test based on permutations are calculated by using the Monte Carlo procedure in order to test the hypothesis of the equality of correlation matrices of different populations, involving p variables. These values are obtained for normal and mixtures of normal distributed three population and are investigated when the expected rejection level is 0.05, 0.10 and 0.20 and the sample size differs from 3 to 10. In respect of the simulation results, the emprical rejection levels of the normal data seems to be very close to the expected rejection levels. Separately, since all the results are smaller than α in case of mixtures of normal data, the test statistic appears to be robust for non-normal (mixtures of normal) data too.
Kaynak
Anadolu Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik BilimlerBağlantı
https://hdl.handle.net/11421/1628Koleksiyonlar
- Cilt.01 Sayı.1 [7]