Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorOysal, Yusuf
dc.contributor.authorYılmaz, Sevcan
dc.date.accessioned2017-11-22T10:50:37Z
dc.date.available2017-11-22T10:50:37Z
dc.date.issued2014
dc.identifier.uri
dc.identifier.urihttps://hdl.handle.net/11421/4368
dc.descriptionTez (doktora) - Anadolu Üniversitesien_US
dc.descriptionAnadolu Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Anabilim Dalıen_US
dc.descriptionKayıt no: 384351en_US
dc.description.abstractBu tezde, üç farklı yeni nöro-bulanık sinir ağı modeli, sistem tanıma ve kontrol problemleri için önerilmektedir. Önerilen modellerin yapısı, bilinmeyen bir fonksiyonun giriş-çıkış verilerinden bulanık kural tabanı elde etmek için kullanılan adaptif nöro bulanık çıkarım sistemi (ANFIS) fikrinden gelmektedir. Birinci model, tip-2 bulanık dalgacık sinir ağı (T2FWNN) 'dır. T2FWNN yapısında, kuralların üyelik fonksiyonları alışılmış bulanık kümelerden farklı olarak zaman ve frekansta yerellik özelliklerine sahip tip-2 dalgacık fonksiyonları ile temsil edilmektedir. Kuralların sonuç kısmında ise dalgacık fonksiyonlarının ağırlıklı toplamı kullanılmıştır. İkinci model, dinamik adaptif nöro bulanık çıkarım sistemi (DANFIS) 'dir. DANFIS, her bir kuralın sonuç bölümünde sabit terim ile birlikte yerel lineer dinamikleri içeren Takagi-Sugeno afin bulanık model bir sinir ağının temsilidir. Böylece, DANFIS ile lineer olmayan dinamik bir sistemin iç davranışının modellenmesi mümkün olacaktır. DANFIS'te, üyelik fonksiyonu olarak Gauss fonksiyonları kullanılmıştır ve kuralların sonuç kısmı ise girişlerin lineer diferansiyel denklemi ile temsil edilmektedir. DANFIS'e ait uygun parametreler gradyan tabanlı öğrenme algoritması ve ek duyarlılık analizi ile belirlenir. Tezin üçüncü bölümünde DANFIS modelinden farklı olarak dalgacık fonksiyonları üyelik fonksiyonu olarak kullanılmaktadır ve yeni ağ dinamik bulanık dalgacık sinir ağı (DFWNN) olarak adlandırılmıştır. Simülasyon sonuçları, önerilen T2FWNN, DANFIS, DFWNN modellerinin etkinliğini göstermek için, sistem tanıma ve kontrol problemleri için verilmiştir.en_US
dc.language.isoturen_US
dc.publisherAnadolu Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectYapay sinir ağları (Bilgisayar bilimi)en_US
dc.subjectDalgacıklar (Matematik)en_US
dc.titleKontrol ve sistem tanımlama uygulamaları için çok katmanlı dinamik bulanık ağ tasarımlarıen_US
dc.typedoctoralThesisen_US
dc.contributor.departmentFen Bilimleri Enstitüsüen_US
dc.identifier.startpageXIII, 106 yaprak : resim + 1 CD-ROM.en_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster